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1 Introduction

Solid State is a crucial chapter for IIT JEE Advanced, focusing on the structural and physical prop-
erties of crystalline solids. This guide offers deeply expanded theoretical discussions, advanced
examples with solutions, rigorous exercises, and JEE-style MCQs, enriched with illustrative dia-
grams to clarify complex concepts. The vibrant format, complete solutions, and focus on multi-step
problem-solving ensure aspirants master topics like crystal structures, defects, and magnetic prop-
erties, preparing them for the exams challenges.

2 Classification of Solids and Crystal Structures

2.1 Theory

Solids are broadly classified into crystalline and amorphous solids based on their atomic arrange-
ment. Crystalline solids exhibit a long-range order with atoms arranged in a repeating 3D pattern,
forming a crystal lattice, whereas amorphous solids lack such order, resembling liquids structurally
(e.g., glass). Crystalline solids are further categorized into ionic, covalent, molecular, and metal-
lic solids, each with distinct properties: ionic solids (e.g., NaCl) have high melting points due to
strong electrostatic forces; covalent solids (e.g., diamond) are hard due to directional covalent bonds;
molecular solids (e.g., ice) are soft with weak van der Waals forces; and metallic solids (e.g., copper)
conduct electricity due to delocalized electrons.

The unit cell is the smallest repeating unit of a crystal lattice, characterized by lattice parameters:
edge lengths (a, b, c) and angles (α, β , γ). There are seven crystal systems (cubic, tetragonal,
orthorhombic, etc.), and 14 Bravais lattices, with cubic systems (simple cubic, BCC, FCC) being
most relevant for JEE. The number of atoms per unit cell (Z) is calculated as:

Z =
Number of atoms at corners

8
+

Number of atoms at faces
2

+
Number of atoms at edges

4
+Number of atoms at center

For example, in FCC, Z = 8
8 +

6
2 = 4. Coordination number (number of nearest neighbors) and atomic

radius relationships (e.g., a = 2r for simple cubic) are critical for JEE problems involving density or
lattice parameter calculations. The diagram below illustrates a simple cubic unit cell.

Figure 1: Simple cubic unit cell, showing atoms at corners (shared by 8 unit cells).

2.2 Example 1: Number of Atoms in BCC Unit Cell

Calculate the number of atoms per unit cell in a body-centered cubic (BCC) structure.

Solution: In a BCC unit cell, there are 8 atoms at the corners and 1 atom at the body
center. Each corner atom is shared by 8 unit cells, and the body-centered atom is fully
within the unit cell. Thus:

Z =
8
8
+1 = 1+1 = 2

So, the number of atoms per BCC unit cell is 2.
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2.3 Example 2: Coordination Number of FCC

Determine the coordination number of an atom in a face-centered cubic (FCC) structure.

Solution: In an FCC unit cell, consider an atom at the center of a face. It is surrounded
by 4 atoms in the same face (in-plane), 4 atoms from the 4 edges of adjacent faces, and 4
atoms from the corners of adjacent unit cells. Alternatively, consider a corner atom: it has
4 face-centered atoms in its own unit cell and 4 in adjacent unit cells, plus 4 from edges,
totaling 12 nearest neighbors. Thus, the coordination number of FCC is 12.

2.4 Example 3: Density of Simple Cubic Crystal

A simple cubic crystal has a lattice parameter a= 3Å and atomic mass 50 g/mol. Calculate its density
(NA = 6.022×1023 mol−1).

Solution: For a simple cubic unit cell, Z = 1 (8 corner atoms, each shared by 8 unit cells:
8
8 = 1). Volume of the unit cell: V = a3 = (3×10−8 cm)3 = 27×10−24 cm3. Mass of one atom:
m= 50

6.022×1023 ≈ 8.303×10−23 g. Mass of the unit cell: Z ·m= 1 ·8.303×10−23 = 8.303×10−23 g.
Density:

ρ =
mass

volume
=

8.303×10−23

27×10−24 ≈ 3.075g/cm3

Thus, the density is approximately 3.08 g/cm3.

3 Close Packing in Solids

3.1 Theory

Close packing refers to the efficient arrangement of spherical particles (atoms) to minimize empty
space in a crystal lattice, maximizing packing efficiency. In one dimension, spheres touch along a
line. In two dimensions, hexagonal close packing (HCP) arranges spheres in a hexagonal pattern,
with each sphere touching 6 others (coordination number 6). In three dimensions, close packing
occurs in two primary forms: cubic close packing (CCP, equivalent to FCC) and hexagonal close
packing (HCP). Both have a packing efficiency of 74% and a coordination number of 12.

In CCP/FCC, layers are stacked in an ABCABC pattern: the third layer (C) is offset from the first (A)
and second (B). In HCP, layers follow an ABAB pattern, where the third layer aligns with the first. The
packing efficiency is calculated as:

Packing efficiency =
Volume of atoms in unit cell

Volume of unit cell
×100

For FCC: Z = 4, and the relationship between lattice parameter a and atomic radius r is a = 2
√

2r,
yielding a packing efficiency of π

√
2

6 ≈ 74%. Voids in close-packed structures include tetrahedral
(coordination number 4) and octahedral (coordination number 6) voids, which are critical for under-
standing ionic solids in JEE problems. The diagram below shows the ABC stacking in FCC.

A
B

C

Figure 2: ABC stacking in FCC (cubic close packing), showing layer arrangement.
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3.2 Example 1: Packing Efficiency of FCC

Calculate the packing efficiency of an FCC unit cell (atomic radius r).

Solution: In FCC, Z = 4. The relationship between lattice parameter a and radius r is
a = 2

√
2r. Volume of the unit cell: V = a3 = (2

√
2r)3 = 8

√
8r3. Volume of one atom: v = 4

3 πr3.
Total volume of atoms: Z · v = 4 · 4

3 πr3 = 16
3 πr3. Packing efficiency:

Efficiency =
16
3 πr3

8
√

8r3
×100 =

16π
3 ·8 ·2

√
2
×100 =

16π
48
√

2
×100 ≈ 74%

Thus, the packing efficiency of FCC is 74%.

3.3 Example 2: Radius of Tetrahedral Void in FCC

Find the radius of a tetrahedral void in an FCC lattice with atomic radius r.

Solution: In an FCC lattice, a tetrahedral void is formed by one corner atom and three face-
centered atoms. The corner atom is at (0,0,0), and face-centered atoms are at (a/2,a/2,0),
(a/2,0,a/2), and (0,a/2,a/2). The distance from the corner to a face-centered atom is
a
√

3/2. Since a = 2
√

2r, this distance is (2
√

2r)
√

3/2 = r
√

6. The center of the tetrahedral

void is at the centroid, at a distance of 3
4 of this from the corner atom: d = 3

4 · r
√

6 = r
√

3
2 .

The radius of the void R satisfies R+ r = d, so:

R = r

√
3
2
− r = r(

√
3
2
−1)≈ r(1.225−1) = 0.225r

Thus, the radius of the tetrahedral void is 0.225r.

3.4 Example 3: Number of Octahedral Voids in HCP

Determine the number of octahedral voids in an HCP unit cell.

Solution: In an HCP unit cell, there are 6 atoms (2 atoms in the basal planes, each
contributing 1

3 of 6 atoms, and 3 atoms in the middle plane). Each HCP unit cell has one
octahedral void per atom in the close-packed structure. However, considering the unit cell
definition, there are 2 octahedral voids fully within the HCP unit cell: one formed between
the bottom A layer and middle B layer, and another between the middle B layer and top A
layer. Thus, the number of octahedral voids in an HCP unit cell is 2.

4 Imperfections in Solids

4.1 Theory

Real crystals deviate from perfect order due to imperfections or defects, which significantly affect
their properties. Defects are classified into point defects (involving single atomic sites) and line
defects (dislocations). Point defects include vacancy defects (missing atoms), interstitial defects
(extra atoms in interstitial sites), and substitutional defects (foreign atoms replacing host atoms).
In ionic solids, point defects maintain charge neutrality, leading to Schottky defects (equal number
of cation and anion vacancies, e.g., in NaCl) and Frenkel defects (cation displaced to an interstitial
site, e.g., in AgCl).

The concentration of defects increases with temperature, following the Arrhenius equation: nd ∝ e−
Ed
kT ,
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